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CS-I21 16 Prague 2, Czech Republic 

Received 28 September 1992, in final form 22 March 1993 

Abstract. Incorporating the passive role of the phonon reservoir (dephasing) in the time 
development of lhe eleemn system via modification of the generalized stochastic Liouville 
equation method, a theory of the impurity-band hopping Hall mobility parallel to the approach 
of Holstein and Friedman is consuucted. Owing to lhe dephasing, the mobility is found to 
consist of WO contributions. The standard one reproduces lhe Holstein and Friedman m u l l s  
while the non-standard one is found to increase with decreasing temperalure at very low T for 
a model with positive power-law density of site energies near the band edge. 

1. Introduction 

The aim of the present work is to pr.esent in more detail a theory of the DC impurity- 
band hopping Hall mobility. with applications, which is parallel to an older approach of 
Holstein and Friedman (Friedman and Holstein 1963, Holstein and Friedman 1968, Friedman 
1971, Holstein 1990). in our approach, one can always find a direct correspondence with 
the Holstein and Friedman theory with all details included. However, our approach is 
generalized in several respects: 

(a) we are able to incorporate not only the active role of the phonon bath (which is 
likely to be of minor importance at low T) but also its passive role (dephasing), determining 
uniquely the position of energy poles with respect to the real axis; for the definition of the 
active (passive) role see below; 

(b) having thus well defined formulae, one can show that care in handling them leads 
then to more than one contribution to the hopping Hall mobility; and 

(c) having previously shown that the resulting hopping Hall mobility might in principle 
deviate form the standard temperature-insensitive form at low T (see &pek 1991a). we 
are here able to discuss a more realistic case of the power-law decay of the density of 
uncorrelated site energies at the bottom of the impurity band. 

One must say, however, that inclusion of the passive role of phonon s is a non-trivial 
matter. For consistency, one needs to introduce the passive and active roles simultaneously 
and on the same footing. Such a possibility is provided by the stochastic Liouville 
equation model going back to Lax (1960) and, in exciton physics, to Primas (1961) and 
Haken and Strobl (1967). In our situation, we do not deal with excitons, but reformulation 
of the theory for charge carriers causes neither formal nor physical problems. Problems 
do, however, appear once we realize that the stochastic Liouville equation model is based 
on the idea of substituting the real phonon bath by an external stochastic potential field 
with some prescribed statistical properties. This means that the theory, in its original 
form, could only apply at very high temperatures (with respect to the band disorder and 
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the impurity band width at least). As rather the opposite situation is interesting for the 
impurity-band conduction problem, we avoid the standard stochastic Liouville equation 
model working with the generalized stochastic Liouville equation model as introduced by 
e.g., &pek (1985) or &pek and Sz6cs (1985). Since, in the latter theory, the phonon bath 
is treated consistently, the proper difference between, e.g., up and down phonon-assisted 
hopping rates (corresponding to the detailed balance condition) between localized states 
appears at any finite temperature. 

On the other hand, this theory must be reformulated in order to keep the same form 
of reasoning as Holstein and Fried". In particular, the latter theory starts from the 
Kubo theory of linear response (Kubo 1957). To do the same in our approach, we have 
to reformulate the generalized stochastic Liouville equation model still further to yield an 
approximate form of the time dependent Heisenberg operators for application in correlation 
functions entering the Kubo formula for the conductivity. This is briefly done in the next 
section. Section 3 is then devoted to the DC conductivity formula derived from the present 
approach. The rest of the paper is devoted to a discussion of the temperature dependence 
of the conductivity for the above model with the power law decay of the density of local 
energies at the band edge. 

Before starting our reasoning, we should, however, mention also another type 
of impurity-band hopping Hall conduction theory which is based on the lowest-order 
Markovian kinetic equation theory in the local basis (ratequation method) (Bottger and 
Bryksin 1976a, b.1977a-c). There are, on the other hand, significant objections to such a 
kinetic theory, in particular: 

V &pek and i Vodnd 

( I )  the necessity of performing unjustified expansions before performing the DC limit; 
(2) the lack of correspondence with rigorous kinetic approaches, with cancellation of 

the electric-field-independent (&pek 1991b) (or appearance of the electric-field-dependent 
(Chen and Su 1989)) transfer rates even in the electric-field-linearized theory; and 

(3) the disturbance of some exact identities (necessary to preserve correspondence with 
the Kubo linear-response theory) owing to the finite order expansion involved (&pek 1988a. 
1990, 1991b). 

In order to illustrate why this type of theory is in fact completely uncertain regarding the 
validity of the results obtained, let us mention that for, e.g., the disorder to be sufficiently 
strong, the Anderson localization of eigenstates of He, appears. Then, in the representation 
of these localized eigenstates, the site off-diagonal elements of He, disappear and instead, 
site off-diagonal terms in He,+, appear. So, the Hamiltonian is the same as in standard 
treatments of phonon-assisted hopping. Let us recall then that the derivation of the rate 
equations leading to the random resistance network (governed by classical Kirchhoff laws) as 
in the above treatment is in fact (up to technical details) the same as that performed by Miller 
and Abrahams (1960). This derivation (and consequently, all the random resistance network 
analogy) is fully correct in the lowest-order (in the nearest-neighbour overlap parameter) 
theories in which expansion is performed before taking, e.g., the DC limit. On the other hand, 
it  completely breaks down if one goes properly to infinite-order (as necessary for any finite 
although possibly weak coupling) theory in the above parameter. This was unequivocally 
proved for the first time by &pek (1988b) who found a full cancellation of terms responsible 
for the appearance of the random resistance network. In order to understand the physical 
reasons for failure of the usual kinetic-equation approach, one should realize that in general, 
one cannot in fact expand well (for purposes of DC quantities) to finite order in powers of 
any (possibly even small but finite) parameter before extracting the relevant result from, 
e.g., emcf kinetic equations and performing the DC limit explicitly. The point is that in the 
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opposite case (when expanding, e.g., in time differential equations, trying to solve them and 
to take the DC limit of the solution afterwards), one in fact assumes that the finite (coupling 
or overlap) parameter is (in a sense) small as compared to the frequency which makes the 
area of validity of the result shrink to zero in the DC limit. Thus, this is the incorrect 
order of limiting processes connected with finite-order expansion in the derivation of the 
approximate rate equations, which mathematically as well as physically fully disqualifies the 
standard ratequation treatment in the DC limit as used by Bottger and Bryksin (1976a, b, 
1977a-c). More explicitly, after performing the DC limit, the interval of allowed values of 
overlap integrals in the latter treatment degenerates to zero. For correction terms (formally 
of higher order in the expansion parameter and omitted in the rate-equation treatments 
although diverging in the DC limit) in the representation of eigenstates of H,I localized in 
the Anderson sense see the article by &pek (1988a). 

At this point, one should realize that the above theories do not even agree well with 
those of Holstein and Friedman (Friedman and Holstein 1963, Holstein and Friedman 1968, 
Friedman 1971, Holstein 1990). The point is that the rate-equation theories predict that the 
Hall mobility should, e.g., become zero in the low-temperature limit (compare equations 
(4.9) and (4.11) of Bottger and Bryksin (1977~)). As usually temperature-insensitive but 
sometimes even increasing Hall mobility with decreasing temperature is experimentally 
observed (see below), we shall not dwell on the rate-equation theories any longer here. 

2. Principles 

We start from the Hamiltonian 

H"' = Her f Hph f Her-ph (2.10) 

(2.1 b) 

(2.k) 

(2.ld) 

&" = &,,(N) are random magnetic-field dependent local electron energies, J,. = Jm,(H) 
are hopping (resonance or transfer) integrals, designate harmonic phonon frequencies 
and g r  are electron-phonon coupling constants. Spins are for simplicity ignored here; 
a! = &(H) and am = a,(H) are then creation and annihilation operators of electrons in 
a local H-dependent basis. Designating the Liouville superoperators 

(2.2) L'O' ... = ( I / h f [ H " ,  .. .] L,I ... = ( l / h ) [ H , , ,  ...I 
one can turn, as shown by (&pek 1985). the Liouille equation 

i(a/at)p(t) = Lto'p(t) (2.3) 

for the electron-phonon density matrix p(t) (using the standard projection technique and 
the Born-Markov approximation or similarly as in the article by &pek and SZiics (1985)) 
to 
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Here p&(t) are matrix elements of the electron density matrix 
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Pe'(t)  = Trph P ( t )  (2.5) 

in the localized basis. Coefficients Amnpq (turning into 

Amnpq =&"pq2(~mp-6mpC ~ r m )  - ( I  -&"4zp8nq(Tn +C) +2(1 - 6 m d 6 m q 6 n p ) i m n  

(2.6) 

where 

in the Haken-Strobl (1967) parametrization) describe the influence of the phonons, L 
then designates the effective Liouville superoperator of the generalized stochastic Liouville 
equation model. One should mention that, in contradistinction to the original Stochastic 
Liouville Equation model (Reineker 1982), may be complex and the symmetry relation 
ym. = ynm may become disturbed (in accordance with the detailed balance condition) 
provided that the sites (local impurity centres) m and n are not equal. 

At this point, one should mention that the Haken-Strobl ymn parameters enter (2.6) 
(and, correspondingly, the stochastic Liouville equation (2.4)) in two different roles. The 
first one is connected with the first term in (2.6). Introducing this term into (2.4) one 
reveals that they give rise to the usual rate term (for the diagonal elements of the density 
matrix, i.e. probabilities) known from the Pauli master equations. Thus, here, these ym. 
coefficients determine the active role of phonons giving rise to the phonon-assisted (i.e. 
inelastic) hopping rates (2ym, for the transfer n -+ m )  for the electron in question. In the 
definition of these coefficients (see, e.g., &pek 1985). in the lowest order in the resonance 
J,,,. integrals at least, 8 functions in energy are revealed, confirming the inelastic character of 
these processes. On the other hand, one should realize that, in contrast with ail usual and in 
this respect less advanced theories of the impurity band hopping Hall mobility, our method 
(in the same way as the original stochastic Liouville equation method itself) also includes 
the passive role of phonons. This is connected with the second term in (2.6) where our 
ymn coefficients enter via C coefficients. In (2.4). one can see that these coefficients cause 
the transversal relaxation of the site off-diagonal elements of the single-electron density 
matrix pel. Such elements have of course no direct connection with the electron transport 
in space, which is determined by the diagonal elements, i.e. site occupation probabilities. 
On the other hand, owing to the first term on the right-hand side of (2.4), the diagonal 
and offdiagonal elements are intermixed. In particular, via this term. the passive (in the 
sense of the above definition) role of the phonons enters transport problems in space. This 
observation is, in our opinion, the most important point in our approach from the point 
of view of the physics of the processes involved. Technically, Ignoring the above passive 
role leads to uncertainties in the definitions of energy denominators (for the purposes of 
defining their reciprocals entering tmnsport formulae) whenever the latter become zero; in 
our theory (because of proper inclusion of the passive role of the phonons, i.e. dephasing), 
however, all the energy denominators of the type E, - E" + ih(C + G )  (see below from 
(2.11)) become non-zero with non-zero r; values, i.e. their reciprocals are well defined. 



Impurity-hand hopping Hull mobility revisired 8549 

Equations (2.4) determine the time dependence of pel. Instead, in our situation, we need 
the (approximate) time dependence of the Heisenberg electron pperators A(f)  determined 
in such a way that 

Trel[pel(t)A] = Trel( [exp(-iLt)pel(0)]A} = Tr,l[pei(0) exp(iLtf)A] Tret[pe'(0)A(r)]. 

(2.7) 

Here Lt means the Hermitian conjugate superoperator to L with respect to the Hilbert- 
Schmit ScEIir product of operators 

(A, B )  = Trel(AtB). (2.8) 

Thus 

(Lt)mnpq = ( ~ p q m n ) ' .  (2.9) 

In this way, one can then calculate the velocity-velocity correlation function 

( u g u d O )  = ~ m l u , l ~ ~ ~ p l u , l ~ ~ T ~ ~ ~ (  p ~ u ~ u . [ e x p ( i L t ~ ) ( u ~ ~ , ) 1 } .  (2.10) 
m v q  

For simplicity, we put pPs = 0 in what follows. The reason is that prS parameters are 
proportional to the second order in S (the small parameter of overlap of our localized 
electronic states with creation and annihilation operators &H) and a,(H)). Because both 
the off-diagonal matrix elements of velocity on the right-hand side of (2.10) are proportional 
to S, omission of PIS cannot yield any error in the theory up to the third order in S. As we 
are going to construct such a theory, pr2 may be taken BS zero. Then, to the third order in 
s, 

( m l u g l n )  nF(&")[1 -nF(&n)] (n lUglm)  

(2.11) 

~ + m ( u g u " ( t ) )  dr = ih mn cm + fi(G + 6 )  ( 
-c P cp - E, + ih (L  + 5) +E E" - E p  + iwr, + 6 )  

J m P m  (I;I U" Im) (nIVvIP)Jpm(H)  ) +N(s4) 

where 

~ F ( E )  = I/Wp[B(c -!-GI + 11. 

Here; one should realize that treating the linear (in the magnetic field H) Hall effect, one 
can omit the linear terms in the H dependence of E, and C, which disappear after taking the 
summation over the electron spin orientations (formally ignored here) in the paramagnetic 
or diamagnetic state. Thus, the only magnetic-field dependence that has to be taken (in the 
linear Hall effect) into account is that of Jrt via the standard formula 

(2.12) 

exact to the linear order in H. In (2.11). it appears also via the standard approximate 
prescription that 

(mlu,ln) = b"/h)[H,i,x,lln) (i/fi)Jmn(ff)(hl-rWln) - (mix&)). (2.13) 
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3. The DC conductivity tensor 

In order to avoid possible doubts regarding the order of the Dc limit and expansion, we 
immediately discuss the DC situation here. The DC conductivity tensor can be expressed as 
(,9 = l / k e T ,  V being the normalizing volume) 

V L‘dpek and L Vodn6 

which yields, upon using (2.1 1)  and (2.13). 

(3.2) 
((PIx.IP) - blx, ln))J, , (H)Jpn(H) 

E” - E p  + Wrp + r,) P 

Here, one should notice the major advantage of having the passive role of phonons 
(dephasing) included. In the opposite case (with all L = 0). the integrand in (3.1) 
would not decay. One would have to introduce its damping as usual via, e.g., the finite 
(although infinitesimal) imaginary part of the frequency (multiplying the integrand in (3.1) 
by exp(-&)) which would immediately cause possible objections regarding the order of 
expansion and the DC limit. (Compare the above discussion of the rate equation theories 
(Bottger and Bryksin 1976% b, 1977a-c).) Except for this difference and (consequently) the 
possibility of using a simpler form of the Kubo formula, our approach essentially follows 
that of, e.g., Holstein and Friedman (1968). 

First of all, let us discuss the diagonal part of U. It is, to the lowest non-vanishing 
order, 

Here, we have used the fact that r, + r, is typically extremely small as compared to, e.g., 
typical widths of the impurity bands. So, in fact, a (e.g.) temperature dependence of r, 
has practically no impact on the temperature dependence of up,,. This corresponds to the 
usual opinion that the phonon-assisted transfer rates 2yn., n m entering C (see (2.6)) do 
not practically influence the result for the conductivity. Thus, because of (2.12). the usual 
formula for the (zero-magnetic-field) drift mobility p - ,9 resulting from (3.3) remains valid 
in our approach. 
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Let us now assume that the extemal magnetic field is directed parallel to the I axis (i.e. 
H = (0, 0, H ) ) .  Then one can easily verify using (2.12) that the asymmetric part of the xy 
conductivity component 

where 

X P ~  = PX - m x  = ( ~ 1 x 1 ~ )  - (mlxlm) etc, 

and A;:,, is the z component of the (vector) area of the triangle substended by sites p .  n 
and m. 

Now, one can easily check that (3.4) turns (except for a numerical factor r, 1) into 
equation (3.35) of Holstein and Friedman (1968) provided that in two terms on the right- 
hand side of (3.4), one takes e.g. 

Ypm = p y  - m y  = (plylp) - (mlylm) 

Re [( I/[&. - E, + wr, + G ) ] ) [ E ,  - E,,, + WG + GI]] 
2 -Im(I/[E. - E,,, + i f i ~  + o ] ) I ~ (  I/[&, - E, + ifi(r, + GI ] }  (3.5) 

and that, as mentioned above, typical values of hC are much less than those of the typical 
impurity band widths. Using the latter fact, one can also formally derive equation (3.35) of 
Holstein and Friedman (1968) provided that one approximates 

Re[( I/[&. - em + W k  + G ) ] ) (  I / [ E ,  -em + Wk + rp)] + I/[&, - E, + ificr, + G)]j] 

The point is that (for uncorrelated levels and constant density of site energies everywhere 
on the energy axis) one then encounters the integral 

r+m 1 

This is the same result as that one of the integration of the right-hand side of (3.5) 

(3.7) 

(3.8) 
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This type of reasoning, although convincing at first sight, is unfortunately not sufficiently 
justified. The arguments leading to (3.6) are shown to be mathematically not fully rigorous 
(not only for non-constant density of site energies in real materials) by &pek (1991a) while 
(3.5) is trivially seen to be incorrect since 

V &pek and t Vodnd 

Re(AB) =ReAReB -1mAImB. (3.9) 

Thus, from (3.4). we obtain in fact 

Here, we have assumed for simplicity that the site energies E, are random (without mutual 
correlations), that there is no correlation between E~ and position in space and, finally, 
that the charge carriers (electrons) are non-degenerate. One might call U("' and u("~' 
the standard and non-standard contributions, respectively, having in mind their svucture 
although (as seen above) the spirit of deriving the standard result by Holstein and Friedman 
rather corresponds to that of dn2). One should yet mention that (as implicitly always 
assumed) the C parameters describing the influence of phonons are (as far as their magnitude 
is concemed) really negligible and may be (as already used in (3.10)) taken as infinitesimal 
quantities. However, keeping them finite (although extremely small) so far has enabled us 
to reveal that U:"). and therefore also the Hall mobility, contains sulprisingly two different 
contributions. 

At this point, an argument is worth mentioning regarding possible objections that the 
non-standard contributian might be, owing to its strange form containing no 6 functions 
ensuring the site-energy coincidence, possibly due to a subtle, perhaps calculational error. 
We should like to tum the reader's attention to the fact that not the standard but the non- 
standard contribution (in our sense) was in fact derived in, e.g., the classical Holstein and 
Friedman (1968) paper. One can check it, ignoring in, e.g., (3.2) all the C coefficients in 
the energy denominators and proceeding then as usual. (For a formal correspondence, one 
would, however, have to introduce, as in standard theories, a nonaero frequency a = o+i& 
to neglect all r and then to take the DC limit a -+ 0. To this order of limits which is in fact 
physically incorrect, we shall retum below.) The fact that this non-standard term is then 
given, in standard papers, the usual form with the product of two 6 functions in energy, is 
then solely due to arguments of the type of (3.7) in the last step of formal manipulations 
which is (at least but not only (see above) for reasons of generally non-constant density of 
states) simply omitted here. So, one can easily argue against the above objections about 
possible error in our treatmenf realizing that omitting (as we do) the last independent step in 
formal manipulations should not cause any change in experimental predictions. In any case, 
if this does yield different conclusions (as we are going to illustrate below), the difference 
cannot be ascribed to our reasoning but rather to an insufficient accuracy of the crucial step 
in standard theories overlooked by others. In order to see the difference, our treatment in 
the next section then regards specially the relevant U"," contribution. 
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At this point, one should be more explicit in speaking about arguments of the type of 
(3.7) in standard papers. In, e.g.. Holstein and Friedman's (1968) paper, one certainly does 
not invoke such simple arguments, at least at first sight. One should, however, mention that, 
e.g., formula (3.28) of Holstein and Friedman (1968) makes in fact the same assumptions. 
This formula is certainly generally incorrect and can be (as convincing arguments by Holstein 
and Friedman (1968) show) correct only in the context of their formulae characterized by 
the 'OD uncertainty necessary to disentangle the Dc limit. Our result, because of the 
inclusion of dephasing, contains no such uncertainty and has already been taken directly at 
zero frequency. Because of the dephasing and the correct order (in contrast to that inherent 
to standard treatments) of limits R -+ 0 and only then r -+ 0, it certainly incorporates 
contributions not seen in, e.g., the Holstein and Friedman (1968) work. (The reader is 
referred to such terms as rZ/(f2 + a'), which clearly disappear in the standard limit 
r + 0 and then R -+ 0 but certainly do not do so in our, the only physically acceptable, 
limit R + 0 and only then, if at all, r + 0.) Even purely formal arguments show that the 
standard approach is correct only to the third order in J while our approach, owing to an 
implicit J dependence of r values (compare &pek and SZacs (1985)), is formally summed 
up to infinity beyond this third order. Thus, in our more genera1 situation, we certainly 
must refrain from arguments such as (3.28) of Holstein and Friedman (1968). That is why, 
in our more general situation, standard arguments about the presence of only hiple-energy- 
coincidence contributions fail and why, therefore. additional contributions appear. 

In this connection, one can also argue that no additional contributions might be expected 
when including, as in this paper, the dephasing owing to the passive role of phonons, as 
the imaginary part of the complex frequency R = o + i6 (i.e. 6) also plays, in standard 
treatments, this role. The careful reader can easily find that this argument is certainly 
incorrect because keeping 6 finite, all arguments leading to , e.g., formula (3.28) of Holstein 
and Friedman (1968) (for which the limit R + 0 is crucial) fail. 

So repeating why, in our belief, one should at least carefully scrutinize (if not directly 
refrain from) all the standard treatments, we come to the conclusion that this is owing to 
the unphysical regime (IQ1 >> r + 0) inherent in standard theories. In reality and our in 
approach, we have r >>. 19.1 -+ 0 and only after that (if at all), can we also take contingently 
r -+ 0. 

4. Consequences for experiment 

In our previous article (&pek 1991a). we have argued that us') in (3.106) reproduces the 
standard result of a temperature-independent Hall mobility 

while U&') is mainly responsible for the final form 

PH rr constant x { [In(2BA)I2 - 2C ln(2BA) + C2 + $n2] (4.2) 

(C being the Euler constant) provided that we assume a step-like density of states 

E $(-A, A) 
PO =constant E E (-A, A) P(E) = (4.3) 
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and that we have very low temperatures @ A  >> 1). (For DA < 1 we again obtain 
p~ = constant.) This is rather surprising because (as already mentioned above) this was 
this non-standard contribution U:"," which was derived by, e.g., Holstein and Friedman 
(1968). The reader should, however, again realize that we have, in U$*). done nothing but 
(for physical as well as formal reasons as also mentioned above) refrained from the last 
stage of formal manipulations in the above paper. The result is encouraging in the sense 
that (4.2) yields (at least for the model density of states (4.3)) increasing values of the Hall 
mobility with decreasing temperature. This not only contradicts the standard result of the 
temperature-insensitive p~ (such a contribution is in our case provided by the standard term 
C T ~ ' ) )  but is also incompatible with predictions of the rate-equation treatments (according 
to which p~ always decreases with decreasing temperature) mentioned above. The question 
then immediately appears of whether this behaviour is an artefact of (4.3). Experimentally, 
increasing values of p~ are sometimes observed (H6schl etol 1988). In any case, attempts 
to fit (4.2) to these experimental data on narrow-gap CdHgTe were not fully successful for 
realistically narrow impurity band widths. Other model densities of states should therefore 
be investigated. 

One should tum the reader's attention to the fact that (3.10b) is a non-trivial nine- 
dimensional integral. We were therefore happy to find another form of the model density 
of states, which is analytically treatable and for which the increase of p~ with decreasing 
temperature is determined by another quantity (different from the impurity band width). 
This is the case of the density of states 

0 & < O  
P(E) = L E A  &+Of. (4.4) 

First, let us mention that (3.3) and (3.10b) yield 

i.e. (see (4.1) and (3.10b)) 

(21 
/& = PE' + pH 

with 

p;) = constant. (4.7) 

So, we will pay attention to just the non-standard term in (3.10b). 
One should mention here one striking feature of U$') in (3.10b): the value of U$'' 

depends not only on the density p(&,) of E, or that of the transfer integrals J,,(O) in the 
vicinity of the bottom of the band when p lies below it for the carriers to be non-degenerate 
(or in the vicinity of p in the opposite case) as it is usual in standard theories and as applies 
also for og". U:) depends also on relatively distant (as compared to ksT) areas on the 
energy axis. Although this is (in kinetic theories) rather an unusual case (for another such 
case see, e.g., &pek 1989), this phenomenon may still be well interpreted as being, e.g., 
owing to the usual quantum-mechanical perturbational contributions of distant zeroth-order 
(in J,*) states to perturbed electron eigenstates in the vicinity of the bottom of the band 
(or p as above). To support this interpretation, it is worth mentioning that p(&,) in (3.10b) 
does not in fact describe the genuine density of states but only the density of E ,  (i.e. the 
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density of states for the zero-hopping case Jrs = 0). So, we shall not dwell on this point 
any longer. 

Assume now that P ( E )  is now given as in (4.4). Then E = 0 is the bottom of the band 
and (3.10b) yields 

(4.8) 

From (4.8). one can see that just E ,  in the vicinity of E = 0 (0 < E ,  5 kBT) play a role 
when T + 0. Further, from (4.4), one can see that 

(4.9) 

(when E, -+ 0) where the right-hand side of (4.9) is finite for 1 z 0 as we shall always 
assume henceforth. Thus, at T -+ 0, 

a? 2 constant x BH 1 ~,,,(.s,)iexp[-~(s, - @)I 
+m 

(4.10) 

Here, we have used the fact that the right-hand side of (4.9) is independent of E, so that 
the integral Sde. . . . in (4.8) simply reduces to a T-independent constant. 

Now, let us retum to the (diagonal part of the) DC conductivity U. For our form of P ( E )  
in (4.4), (3.3) yields 

= COnStaIIt X KeXp(fip)(kBT)’. 

cr 2 constant x exp(fip)(keT)U. (4.11) 

Thus, 

/LH 2 ( k B 7 y .  (4.12) 

So, according to this theory and for the model density of states (4.4). one should expect 
(negative) power-law increase of the impurity-band hopping Hall mobility near the bottom 
of the band at very low temperatures. The power (exponent) in (4.12) is, up to the sign, 
given by that in the density of states in (4.4). Although it  might in principle be possible 
to determine the power from experiment, its exact value is currently very difficult to obtain 
because of noisy low temperature experimental data as well as the necessity to extend 
measurements to extremely low temperatures. As an illustration, analysis of experimental 
data on CdHgTe reported by Hiischl et al (1988) shows an evident increase of p” with 
decreasing temperature above He temperature which already contradicts standard results. 
On the other hand, it is still impossible to decide whether these experimental data indicate 
divergent or regular behaviour at T + 0 (Grill 1992). 

The last point to be mentioned here is why in the limit A + 0+, the form of our 
prediction (4.12) does not resemble (4.2) at all. We have verified that this seeming lack of 
correspondence is due to the fact that the usual criteria for converting the order of limit and 
integration are not (in, e.g., (4.8)) fulfilled. 
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5. Conclusions 

Theory of the impurity-band hopping Hall conductivity based on the generalized Stochastic 
Liouville equation model is presented, which generalizes the classical treatment by Holstein 
and Friedman. Meticulous inclusion of both the active and, in particular, the passive 
contribution of the bath to the electron transfer (phonon-assisted transfer and dephasing of 
the singleelectron density matrix, respectively) confirms the standard Holstein and Friedman 
result for the impurity-band hopping Hall mobility p~ but, in addition, it reveals another 
(additive) correction. The low-temperature asymptotic of the latter correction are shown to 
behave as T-* for the impurity band density of states p(&) 2 &* near the lower edge of the 
band. This potentially increasing character of /.LH with decreasing temperature is a novel 
feature of the theory (not known in other approaches), which is argued to correspond to 
some experimental data 
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